contacts
Sales Department
  • Minsk, Nezavisimosti ave., 177, room 1a

BIM

Технические решения, разработанные в BIM

Архитектурные и конструктивные решения в BIM, BIM координация, строительство на основе BIM-модели

Генеральное планирование в BIM

Проектная компания ЭНЭКА разрабатывает генеральный план земельного участка.

Разрабатываемая информационная модель генерального плана содержит легко извлекаемые данные по объемам земляных работ, применяемые изделиям и материалам.

При необходимости внесения изменений в ранее выпущенную документацию динамическая модель генерального плана позволит в кратчайшие сроки обновить весь комплект рабочих чертежей. Изменение абсолютных отметок в какой-либо части площадки влечет за собой автоматическое исправление плана вертикальной планировки и картограммы земляных работ.

Архитектурные решения в BIM

Построение ограждающих конструкций (стен, перекрытий, окон, дверей, витражей и др.) выполняется с указанием материалов, точных габаритов и пространственного размещения, а также с указанием теплофизических свойств. В модели отображается информация об осях и уровнях здания, помещениях / зонах и их свойствах (наименование, площадь, категория и др.).

Специалисты ЭНЭКА создают подробные фотографические визуализации архитектуры будущего объекта строительства для последующего использования в презентационных и рекламных материалах.

В зависимости от требований Заказчика, архитектурные информационные модели могут быть разработаны, как в среде BIM, так и с использованием CAD.

Наглядность и информационная наполненность BIM-модели делает разработку архитектуры посредством информационного моделирования не только более целесообразной, но и более выгодной и обоснованной для Заказчика. 

Конструктивные решения в BIM

Построение конструктивной модели здания выполняется с указанием точного пространственного размещения фундаментов, свай, ростверков, балок, плит перекрытий и других элементов. Конструкциям назначаются материалы и технические характеристики (класс бетона, марка стали и т.д.).

Выполняется моделирование армирования конструкций: раскладка арматурных стержней и каркасов, задается шаг стержней, назначаются диаметры и класс арматуры, создаются хомуты, шпильки и т.д. Арматуре конструкций назначаются защитные слои, согласно требованиям к конструкциям.

Формируются чертежи с видами, схемами, разрезами, спецификации на монолитные конструкции, ведомости деталей, ведомости расхода стали. Создаются ведомости элементов и технические спецификации стали, спецификации к схемам расположения элементов.

Разработка конструктивных решений в BIM существенно снижает вероятность возникновения дальнейших коллизий конструктивных элементов с другими. А процесс производства строительных конструкций проходит в разы проще, вероятность ошибок – минимальна.

Инженерные решения в BIM

Оборудование и материалы для инженерных систем вносятся в модель также с указанием точных габаритов и пространственного размещения. Трубопроводы и воздуховоды моделируются с указанием размеров сечения, величины уклона и его направления, отображением соединительных элементов, арматуры и изоляционных материалов.

Элементы модели объединяются в инженерные системы и содержат полную техническую информацию (расход перемещаемой среды, потери давления, электрические характеристики) необходимую для формирования чертежей, спецификаций и выдачи заданий специалистам по смежным дисциплинам.

При необходимости, возможна разработка элементов крепления оборудования и магистралей инженерных систем, с последующим учетом этих элементов при проверке на наличие коллизий.

Оформление чертежей производится с сохранением связи между элементом модели и марками оформления, без применения «несвязанного текста», что позволяет вносить изменения в модели или отслеживать принятые технические решения.

Электрические щиты и оборудование вносятся в модель с указанием точных габаритов и пространственного размещения, объединяются в логические системы с указанием характеристик сети (напряжение, мощность, сила ток и др.). Моделирование электрических лотков и коробов выполняется с указанием размеров сечения и отображением соединительных элементов. Провода отображаются на планах, в виде «линейных связей» электрических щитов и потребителей электричества, с автоматическим подсчетом их длины. Провода не отображаются на 3D модели здания и не участвуют в координации инженерных систем.

Выдача заданий смежным дисциплинам осуществляется в среде BIM-модели. Это улучшает коммуникацию между специалистами, исключает потерю информации и позволяет отслеживать возможные изменения в заданиях на протяжении всего процесса проектирования.

BIM-координация

Одной из важнейших целей применения BIM является физическая координация систем между дисциплинами. BIM координация в ЭНЭКА включает в себя:

  • Разработку плана по применению BIM в проекте.
  • Построение совместной модели в среде Navisworks Managе. Совместная модель включает в себя архитектурную, конструктивную модель, а также модель инженерных систем.
  • Проверку на коллизии (пересечения) с формированием отчетов для специалистов.
  • Разрешение коллизий на совещаниях по координации.

В процессе BIM-координации разрабатывается наиболее оптимальное решение по построению модели и передаче информации между дисциплинами. В свою очередь, это ведет к минимизации ошибок и улучшению качества проектных решений.

заказать
250+

Штат компании

400+

Предпроектных и проектных работ в год

500+

Общее количество построенных объектов

Дополнительная информация по услугам

BIM (Building Information Modeling / Информационное моделирование здания) – это уникальный подход к проектированию, возведению, эксплуатации и ремонту здания. Информационное моделирование управляет жизненным циклом объекта на всех этапах его существования: от концептуальной модели до демонтажа и оценки объемов строительного мусора.

Основным отличием BIM от прочих видов проектирования является сбор и комплексная обработка всей архитектурно-конструкторской, технологической, экономической, эксплуатационной и прочей информации о здании в единой информационной среде (BIM-модели). При этом все элементы модели являются взаимосвязанными и взаимозависимыми, что, по сути, наделяет модель фактором реалистичности (приближенности к реальному зданию и реальной ситуации).

Преимущества BIM перед CAD

Технологии информационного моделирования обладают обилием качественных преимуществ. Так, казалось бы, неощутимое изменение пространственного мышления проектировщика в конечном итоге существенно снижает риски возникновения ошибок, физических и интеллектуальных коллизий. Проектировщик имеет возможность и прямую необходимость мыслить о здании, как о целостном трехмерном объекте (существующем также во времени), а не как о наборе чертежей для прохождения экспертизы.

Детализация BIM-модели

Одним из преимуществ применения BIM-технологий является то, что информация о каждом элементе здания с ходом процесса проектирования накапливается, дополняется и расширяется. Казалось бы, то же можно было бы сказать и о традиционном «чертежном» проектировании, однако устоявшаяся форма хранения, переноса и развития информации об объекте строительства не совершенна и требует множества дополнительных действий.

Иногда, в CAD-проектировании, перенос информации с предыдущей стадии на следующую не представляется целесообразным или возможным в принципе. Так, например, чертежи и даже визуализация предварительного проекта (концепции или эскиза) в редчайших случаях находит применение при разработке стадии А. В то же время, при подготовке предпроекта в BIM, вся информация (100%), полученная на этой стадии успешно используется в дальнейшем. Это позволяет не только ускорить процесс разработки проекта, но и выполнять каждое последующее действие, опираясь на полученную ранее информацию.

Уровни детализации BIM-модели

Для BIM характерны такие понятия, как LOD и LOI.

LOD (Level of Model Detail) – уровень проработки (детализации) BIM-модели, графического контента.

LOI (Level of Model Information) – уровень проработки информации, неграфического (атрибутивного) контента.

На каждом из этапов разработки проекта LOD и LOI идут параллельно в сторону увеличения. Они относятся, как ко всей модели, так и к отдельным её элементам. Однозначный консенсус в этом вопросе еще не был достигнут, однако принято считать начальным уровнем детализации модели – LOD 100 (концептуальные решения), а завершающим – LOD 500 (эксплуатация и ремонт).

LOD 100 (Концепт) – модель представлена в виде объемных формообразующих элементов с приблизительными размерами, формой и ориентацией.

LOD 200 (Предпроектные решения) – модель представлена в виде объекта или сборки, как характерный представитель системы здания с приблизительными размерами, формой, пространственным положением, ориентацией и необходимой неграфической информацией.

LOD 300 (Стадия П) – модель представлена в виде объекта или сборки, принадлежащей конкретной системе здания с точными размерами, формой, пространственным положением, ориентацией, связями и необходимой неграфической информацией.

LOD 400 (Стадия Р) – модель представлена в виде конкретной сборки с детальными размерами, формой, пространственным положением, ориентацией, четкими связями, данными по изготовлению и монтажу, а также другой необходимой неграфической информацией.

LOD 500 (Эксплуатация) – модель представлена в виде конкретной сборки с фактическими размерами, формой, пространственным положением, ориентацией и неграфической информацией достаточной для передачи модели в эксплуатацию.

  • /

4D моделирование объединяет 3D-модель объекта и его календарный план строительства, таким образом, обозначая существование тех или иных элементов в определенном отрезке времени. Так формируется визуально подкрепленный календарный график работ, который можно сделать максимально подробным или наоборот укрупненным.

Весь процесс возведения здания показан в виде анимационного ролика с возможностью делать паузы и писать комментарии, выявлять пространственно-временные коллизии, оптимизировать работу техники и строителей.

В 4D модель вносятся данные не только по календарному плану строительства, касающиеся различных элементов здания, но и объекты, принимающие участие в строительстве и значительно влияющие на этот процесс. Расположение крана и площадь его действия, количество и размер машин, способных проехать через стройплощадку за сутки, размещение и размеры строительного городка, вывоз мусора и многое другое – все это можно и нужно учитывать при планировании строительства. А наглядная и подробная визуализация календарного плана позволяет не только исключить различные ошибки, но и оптимизировать процесс еще непосредственно до начала строительства.

Принципы работы технологии 4D

Специалисты могут моделировать запланированные последовательности строительных работ, выявлять столкновения и проблемы, находить возможности для улучшения календарных планов строительства, отслеживать поставку материалов, управлять цепочкой поставок и многое другое.

В специализированном ПО выполняется BIM-проектирование здания и создается модель, которая в дальнейшем будет использована в Navisworks для создания 4D.

Календарный план строительства разрабатывается нашими специалистами в Microsoft Project. Сам по себе график уже является достаточным для понимания хода работ и полностью соответствует стандартам. Специалисты ЭНЭКА готовят календарный план для импорта в Navisworks, делая его максимально подробным.

Преимущества 4D в ЭНЭКА

Экономим ваши деньги
За счет устранения физических, интеллектуальных и пространственно-временных коллизий.

Оптимизируем строительный процесс
Не просто устраняем ошибки, но и выявляем возможности ускорения, удешевления процесса строительства.

Максимально подробная модель
Делаем модель предельно детализированной, чтобы каждый элемент был учтен в процессе планирования строительства.

Опытные специалисты
В нашей команде есть настоящие профессионалы 4D, чьи навыки подтверждены сертификатами и множеством завершенных проектов.

Мы в числе первых
ЭНЭКА более 3-х лет успешно практикует BIM, поэтому внедрение 4D-технологий не стало для нас проблемой. Проектные организации, работающие в CAD, не могут дать настолько же качественные решения по проекту и планированию процесса строительства.

  • /

5D моделирование - это процесс создания проекта здания, включающего в себя кроме информации о положении элементов объекта в пространстве (3D) и времени (4D) любую другую исчисляемую характеристику, такую как стоимость (5D).

BIM-модель служит источником всей информации о здании. Каждый элемент будущего объекта хранит полное описание о себе и своем взаимоотношении со всей моделью, что позволяет в 5D-модели не только понять, сколько обойдутся те или иные строительные работы, но и сделать прогнозный срез бюджета строительства на любой его стадии (основываясь на пространственно-временной информационной модели).

Преимущества 5D в сравнении с традиционными методами расчета смет

Прежде чем рассмотреть преимущества использования технологии 5D, необходимо разобраться в том, какие проблемы сопутствуют традиционному процессу создания сметных расчетов.

Проблемы при традиционных методах расчета смет:

  • Длительные сроки подготовки смет
  • Расчет смет требует большого количества участников
  • Громоздкие, трудоемкие расчеты
  • Ведомость объемов работ исключительно экспертная – высока вероятность погрешностей
  • Ошибки чтения спецификаций и чертежей от разных подрядчиков
  • Большая трудоемкость исправления ошибок и перерасчета смет при каждом изменении в проекте
  • Сметчик может быть не уведомлен об изменениях в проекте
  • Сметная документация составляется без привязки к производственным условиям
  • Отсутствует единая система контроля и взаимосвязи смет

Основная проблема состоит в правильном сборе, получении и обработке сметчиком данных. Данные по объекту поступают от разных организаций-подрядчиков, каждая из которых формирует данные по-своему, из-за чего сметчику приходится либо заранее озвучивать требования к разработке спецификаций, либо в дальнейшем самостоятельно их дорабатывать.

  • /